37 research outputs found

    Recoverable robust single day aircraft maintenance routing problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex SystemsNatural Sciences and Engineering Research Council of Canada

    The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThe tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of this paper is to develop an operationally flexible method, based upon the one-day routes business model, to compute tail assignments that satisfy short-range—within the next three days—aircraft maintenance requirements. While maintenance plans commonly span multiple days, the methods used to compute tail assignments for the given plans can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by using solutions from the one-day routes aircraft maintenance routing approach as input. The daily tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A computational study will be performed to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-flight to reduce maintenance misalignments. The daily tail assignment problem and the developed algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements when evaluated using input data collected from three different airlines

    VRP with Time Windows

    Get PDF
    Abstract This paper presents a survey of the research on the Vehicle Routing Problem with Time Windows (VRPTW), an extension of the Capacitated Vehicle Routing Problem. In the VRPTW, the service at each customer must start within an associated time window and the vehicle must remain at the customer location during service. Soft time windows can be violated at a cost while hard time windows do not allow for a vehicle to arrive at a customer after the latest time to begin service. We first present a multi-commodity network flow formulation with time and capacity constraints for the VRPTW. Approximation methods proposed in the literature to derive upper bounds are then reviewed. Then we explain how lower bounds can be obtained using optimal approaches, namely, Lagrangean relaxation and column generation. Next, we provide branching and cutting strategies that can be embedded within these optimal approaches to produce integer solutions. Special cases and extensions to the VRPTW follow as well as our conclusions. Résumé Cet article synthèse porte sur les récents développements concernant le problème du routage de véhicules sous des contraintes de fenêtres de temps. Dans ce problème, le serviceà un client doit débuterà l'intérieur d'un intervalle de temps. Celui-ci peutêtre, soit relaché au prix d'une certaine pénalité, soit rigide, auquel cas, il n'est pas permis de dépasser la limite supérieure. Nous présentons un modèle de réseau multi-flots avec des contraintes de temps et de capacité. Les méthodes heuristiques permettant de calculer des bornes supérieures sont d'abord présentées. Suivent les modèles d'optimisation basés sur la relaxation lagrangienne et la génération de colonnes pourévaluer des bornes inférieures. Enfin, on présente les stratégies de coupes et de branchements liéesà ces méthodes afin de déterminer des solutions entières. L'article se termine par l'étude de cas particuliers et d'extensions ainsi que nos conclusions
    corecore